Kepler: NASA's First Mission Capable of Finding Earth-Size Planets Kepler is the first space mission to search for Earth-size planets in the habitable zone of other stars in our neighborhood of the galaxy. Kepler is a special-purpose spacecraft that precisely measures the light variations from thousands of distant stars, looking for sequences of planetary transits. When a planet passes in front of its parent star, as seen from our solar system, it blocks a small fraction of the light from that star—this is known as a transit. Searching for transits of distant "Earths" is like looking for the drop in brightness when a gnat flies across a headlight seen from many miles away. Measuring repeated transits, with a regular period, duration and change in brightness, enables the detection of planets and their orbits. *Kepler* seeks planets the size of Earth in the habitable zone around other stars similar to our Sun. The centuries-old quest for other worlds like our Earth has been rejuvenated in the past decade by > the intense excitement and popular interest surrounding the discovery of more than 400 giant planets orbiting stars beyond our solar system. With the exception of the pulsar planets, most of the extrasolar planets detected to date are gas giants like Jupiter. The challenge is to find Earthlike planets, which are 30-600 times less massive than Jupiter. Kepler is specifically designed to search for Earths in the habitable zone of solar-like stars out to distances of about three thousand light years. Kepler is monitoring over 100,000 stars similar to our Sun for brightness changes produced by planetary transits. At the beginning of the mission, planets of all sizes orbiting very close to their stars will be found. After three years, the Kepler scientists will be able to discover planets with orbits of one year, that is, those in the habitable zone of stars like the Sun. If Earth-size planets in the habitable zone NASA's Kepler Mission launches, March 6, 2009. FS-2009-12-01-ARC 1209-2000 NASAfacts Kepler will find planets by looking for tiny dips in the brightness of a star caused by planetary transits. are common, then life may be ubiquitous in our galaxy. On the other hand, if no terrestrial planets are found, then "Earths" may be rare. Three or more transits of a given star—all with a consistent period, brightness change and duration—provide a rigorous method of detection and confirmation. The data reveal the planet's: - Size from the brightness change and size of the star; - Orbital period from the time between transits; - Orbital size from the mass of the star, the period, and using Kepler's third law; - Temperature from the planet's orbit and the temperature of the star. From these data, scientists can calculate the fraction of stars that have planets, and the distributions of planetary sizes and orbits for many different types of stars. The results will tell us how often planets occur in the habitable zone of other stars. If common, then hundreds of Earth-size planets in the habitable zone and thousands outside the habitable zone will be detected. # The Spacecraft The *Kepler* spacecraft contains a single instrument called a photometer, that is, a light meter, which can simultaneously measure the brightness variations of over 100,000 stars with a precision of about 20 parts per million (ppm). This precision allows detection of Earth-like transits, which cause a change in brightness of 84 ppm of solar-like stars. The transits last for a few hours to about half of a day. The photometer is so sensitive that planets as small as Mars can be detected when they occur in short-period orbits, like those of many of the giant planets already discovered. So as not to miss any transits, *Kepler* is staring at the same star field in the Cygnus-Lyra region for the entire mission. With an aperture of nearly one meter in diameter, *Kepler* is the largest Schmidt-type telescope ever launched. Schmidt optics have an unusually large field of view. The amount of sky viewed is equivalent to an open hand held at arm's length. The detectors National Aeronautics and Space Administration Ames Research Center Moffett Field, California 94035 - 1000 www.nasa.gov used are charged coupled devices (CCDs) similar to those found in consumer digital cameras. However, unlike an ordinary digital camera with a few megapixels, *Kepler's* detector array has 95 megapixels. ### **Scientific Community Involvement** There are three ways for the broader scientific community to participate in the mission via NASA Research Opportunities. Scientists have been invited to propose to: - Conduct complementary investigations that support the planetary detection science of *Kepler*; - Use *Kepler* to observe other types of astrophysically interesting objects in its field of view, such as variable stars, quasars and galaxies; and - Analyze the unique *Kepler* data archive for phenomena relating to stellar activity. The archive will contain many years of continuous observations of stars with unprecedented photometric precision. For example, such data are useful for estimating how often stars like our Sun could cause a climate change like that which brought on the mini-ice age in the 17th century. # **Education and Public Outreach Program** The EPO program leverages pre-existing collaborations, networks, and team experience to maximize the development and impact of EPO products and activities. It includes: - Formal Programs—*Hands On Universe* for grades 9-12; and *Great Explorations in Math and Science* (GEMS) Space Science Sequence for grades 3-5 and 6-8. GEMS reaches thousands of teachers through over 80 GEMS sites/centers nationwide and worldwide; - Informal Programs–Exhibits and programs for science and technology museums and planetaria; and - Public Outreach Programs–Kits for amateur astronomers via the Night Sky Network; nationally broadcast science documentaries; and StarDate radio programs. # **Mission Organization and Status** The *Kepler Mission* was competitively selected in December 2001 as NASA's tenth Discovery mission. NASA Ames Research Center is responsible for the data analysis and scientific interpretation of the data, the development of the ground system and management of the operations phase. NASA's Jet Propulsion Laboratory managed the development phase. Ball Aerospace and Technologies Corporation developed the photometer and spacecraft and supports mission operations. #### Kepler Discovery Mission Science Principal Investigator Project Manager William Borucki Roger Hunter NASA Ames Research Center NASA Ames Research Center Learn more at the Kepler web site: http://kepler.nasa.gov